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1. Introduction 

The objective of MADCAT is to produce a robust, highly accurate transcription engine that 
ingests documents of multiple types and produces English transcriptions of their content. For 
addressing the technical challenges implicit in that goal, the BBN-led team proposed a system 
that embodies integration of five major operations: (1) pre-processing and image enhancement, 
(2) page segmentation, (3) text recognition, and (4) metadata extraction. In Phase 1 of the 
MADCAT effort, we made significant improvements in all the above areas. In addition, we 
developed an end-to-end system for processing the Phase 1 evaluation data. The evaluation 
system exceeded the Phase 1 program goal of 40% accuracy on 70% of the documents. Below, 
we summarize the work performed by the BBN-led team in Phase 1 of the MADCAT effort. We 
highlight our accomplishments by each technical area and also indicate the performers in that 
area. 

2. Accomplishments in Pre-processing [BBN, Polar Rain, SUNY, UMD| 

The goal of pre-processing is to enhance noisy/degraded images for text recognition and 
translation. Typically, handwritten text often contains non-text artifacts such as ruled page-lines, 
stains, speckle noise, etc. Often the document has breaks in the text glyphs and some glyphs are 
merged. Also the scanning may produce images at a low resolution. 
In this phase we focused on two areas: (a) ruled page-line removal, and (b) image-enhancement. 

2.1 Page Line Detection [BBN, Polar Rain, SUNY, UMD| 

Heuristics for Page-line Detection and Removal [BBN]: In this approach, the input image is 
initially divided into ten equal vertical strips. Page-lines are detected for each strip as follows: 

1.   The projection profile of the intensity is normalized by dividing it by the width of the 
strip. The normalized projection profile is denoted by PROJ(K). 
A smoothing template is applied to the projection profile. The smoothed value 
PROJ SMOOTHED( Y) at a given Y is the average of all the values within a window of 
W pixels wide, centered at Y. Different values of W (set to 2*dpi/300 and 4*dpi/300) are 
used to detect lines of different widths. 

We search the smoothed projection profile for pixels Y* such that 
PROJ SMOOTHED^*) > 0.5 and the local maxima is within the radius of l2dpi/300 

For each Y* detected, we search within W - y *\ < 3 dpi• 1300 of the strip for black pixels 

and mark them as "page-line pixels" 

2. 

.V 

4. 

(a) Ruled-line detection   (b) Classification of ruled-line pixels 

Figure 1. Classification of ruled-line pixels as black or white. 

The detected ruled-lines are classified as "black" or "white" heuristically. If a pixel not associated 
with the page-line is black and adjacent to a page-line pixel, then the pixels starting from the one 
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immediately adjacent to the page-line pixel to the pixel at the center of the page-line are classified 
as "black". The rest of the pixels are classified as "white". An illustration is shown in Figure 1. 
MRF-based Page-line Removal |BBN): Most approaches for page-line removal such as the one 
described above introduce artifacts such as breaks in a glyph, which does not result in any 
significant improvement in word error rate (WER). To reduce the artifacts introduced by page- 
line removal, we developed a page-line removal and restoration algorithm using Markov Random 
Field (MRF). A binarized image 
is modeled as the output of an 
MRF and the pixels associated 
with the ruled-line are restored       **^ I I i 
using   the   belief  propagation (a) Input    (b) Heuristic   (c) MRF 
algorithm. As shown in samples 
from MADCAT data Figure 2: MRF based ruled-line removal. 

(distributed by LDC) in Figure 
2, our approach removes the page-line while still preserving the smooth edges in the handwritten 
glyphs. The MRF approach is also visually better than a heuristic-based approach for restoration. 

Shapc-DNA based Page-line Removal [Polar Rain): In this phase, we designed a text line 
detection and removal algorithm for handwritten document images based on Shape-DNA models. 
In this approach, the binary input image is projected onto a text database. A ruled page-line 
database is computed from page lines, and the document image is projected onto this database in 
order to detect page lines. Shape-DNA models are thus computed off-line using page-line images 
(e.g., images full of horizontally parallel lines) so as to build a database that models the 
characteristics of page lines that arc observed in handwritten document images. We compute a list 
of shape-DNA patterns that have similar shape to ruled line artifacts and exclude these patterns 
during projection onto the text database. We also compute the text database from only 
handwritten text images. 

Input document images are then projected onto Shape-DNA models. The projection image is a 
probability image that shows line segments on the locations of possible page/rule lines and also 
on the locations of text characters. On the locations of possible page/rule lines, probabilities are 
much stronger compared to text characters. Therefore after binarizing the probability image, the 
images with and without page/ruled lines are obtained for each document. High level-semantic 
based morphological operators are applied to the projection distance image. The line detection 
process takes about two seconds for an image of size 2500x3300 pixels. Experimental results 
with more than a thousand images showed that the false positive rate (i.e., percentage of 
documents without rule lines that are detected to have lines) is less than one percent and the false 
negative rate is zero, In other words, all handwritten documents with rule lines are detected. 
We also developed a page-line cleaning algorithm for handwritten documents with ruled lines. 
While projecting the input image onto Shape-DNA models, image blocks where the projection 
distance to the line database is smaller than a pre-defined threshold (e.g. twice the block length), 
are set to white patterns assuming that they correspond to rule lines, not text characters. To 
remove existing artifacts in this image, such as page-lines between characters, we exploit the line 
image and use the computed locations of page-lines to clear them from the page-line removed 
image. After page-line cleaning, the image may still have some line artifacts, such as small line 
segments that are close or connected to text characters. We have developed a handwritten image 
restoration technique in order to remove such artifacts and restore the shape of text characters. 
We do this by computing new Shape-DNA models using handwritten document images to model 
the text characters for handwritten text. 
Run-length based Page-line removal [SUNYJ: Many Arabic characters have long strokes that 
are almost horizontal and run along ruled page-lines. So, simple projection profile-based methods 



for ruled-line removal do not work well for such documents. In this phase, SUNY developed a 
module for page-line removal based on the following principles. Horizontal run-length smearing 
is used to fill in small gaps in ruled lines that were typically caused due to binarization artifacts. 
Next, an adaptive fuzzy run-length based approach coupled with heuristics is used to detect the 
position of the page-lines and subsequently remove the page lines. When ruled page-lines are 
removed, some pixels belonging to handwritten text strokes could also be inadvertently removed. 
Therefore, we used a region-growing based method to restore the text strokes damaged during 
page-line removal. 
Page-line Detection and Removal using Linear Sub-spaces |UMD]: We investigated a novel 
method for removing page rule lines in monochromatic handwritten Arabic documents using 
subspace methods with minimal effect on the quality of the foreground text. We use moment and 
histogram properties to extract features that represent the characteristics of the underlying rule 
lines. During the training phase, we incrementally construct linear subspaces representing 
horizontal and vertical lines using a set of rule line-only images. During the testing phase, we 
measured the distance between features extracted from the test image and the previously 
constructed subspace. Pixels that belong to foreground text regions have larger distances to the 
subspace and will be left unchanged. We also introduced a pixel-level evaluation methodology 
that can generally be used to assess the accuracy of any noise removal algorithm and we applied 
it to the page rule line removal problem. Evaluating algorithms for noise removal from 
handwritten documents requires pixel-level annotation (i.e. ground truth) in order to compute 
meaningful statistics. Such pixel level annotation cannot be manually obtained for large 
collections of document images. In order to address this problem, we introduced a method for 
creating semi-synthetic data sets that can be used to evaluate noise removal algorithms. A number 
of pages that contain page-lines but no text are first scanned and binarized to create a set of page 
templates. These templates are then combined with a set of document images containing only text 
handwritten by different writers, in a cross product fashion. Interactions between text (in different 
positions and styles) and ruled lines results in significant variability in the evaluation data. 
Experimental results presented on a data set of 50 Arabic documents, handwritten by different 
writers, demonstrated that the subspace method achieves approximately 88% for both recall and 
precision on the 50 test images. 

2.2 Image Enhancement [Polar Rain, SUNY] 

Shape-DNA based Image Enhancement [Polar Rain): In this phase, we performed experiments 
to assess the usefulness of shape-DNA enhancement on machine-print and handwritten images. 
The shape-DNA approach uses a database of low- and high-resolution shapes and a probabilistic 
shape-mapping model. The database and mapping are both automatically learned from training 
data to estimate high-resolution details from low-resolution shapes using shape-based 
computation models. 

For our initial pre-processing experiments we created a corpus of images from two different 
sources: (1) 300 real-world documents acquired primarily in Afghanistan, and (2) a controlled 
document set of 33 images generated by three different Iraqi writers each writing the same 11 
distinct documents. Using this corpus of images, two sets of preliminary experiments were 
performed to separately assess the restoration and cleaning attributes of the shape-DNA approach. 
In the first set of experiments the usefulness of the restoration was assessed. We first estimated 
shape databases using 15 of the 33 controlled handwritten documents. Then, we synthetically 
degraded the remaining 18 controlled documents by introducing breaks in character glyphs and 
degradations that mimic those observed in real-world documents. Finally, we applied the shape- 
DNA technique to restore the broken characters. In the second set of experiments, our goal was 
to evaluate the cleaning of real-world documents without restoring the text. For these experiments 
we did not train on the controlled handwritten data. Instead we used shape databases trained on 



machine-printed Arabic documents. We assessed the effectiveness of the restoration and cleaning 
processes through a visual comparison of the output with the input image. The comparison 
showed that the shape-DNA technique is capable of cleaning age-related degradations and 
smudge marks in real-world documents. On the controlled set of handwritten documents the 
shape-DNA technique was able to recover most of the missing pieces of the broken characters. 
We further focused on configuring shape-DNA enhancement on documents in a DIA-supplied 
corpus of Arabic text as well on documents from the MADCAT handwritten corpus. The images 
in the DIA corpus are very noisy and also contain a fair number of non-text objects, with 
handwritten text often overlaid on these non-text objects. Therefore, it is important to detect text 
in such documents before cleaning or restoration. We also observed that the projection of text- 
only segments onto shape-DNA models results in much smaller distances compared to the 
projection of non-text segments onto the same models. Based on this observation, we explored a 
novel application of the shape-DNA approach, namely, to differentiate text-only segments from 
non-text segments. For our initial experiments, we used shape-DNA models trained on printed 
text documents. Next, we used these models to detect text-only regions in samples documents 
from the DIA corpus. Preliminary results indicate that this approach is a viable one for text 
detection and verification. As shown in Figure 3, our approach is robust to segments that contain 

• 

• 

• 

' fear 

* 

t„'j*:*±?  » '••••—*   i»-j-tv" 
* - ?."   -   rf~~ '  '             '&. 

- • y z£i . ^   ^-' r *«- . /. . -**:     y 

*>.:' 

Figure 3: Shape-DNA on DIA sample from Afghanistan. 
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Figure 4: Shape-DNA on AMA sample. 



a mix of text and non-text object. 
We also applied shape-DNA enhancement to images in the Applied Media Analytics (AMA) 
collected handwritten (HW) corpus. Since the AMA images contain artifacts such as page lines, 
extraneous dots, scanning artifacts, etc., we customized the restoration to handle such 
degradations. Figure 4 shows a sample output for the shape-DNA restoration applied to an AMA 
sample containing page lines and other scanning artifacts. 
Morphology-based Image Enhancement [SUNY]: In this phase, we additionally developed a 
noise removal and image enhancement algorithm based on a combination of morphology-based 
and the region growing binary image enhancement algorithm. An example is shown in Figure 5. 
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Degraded Image Enhanced Image 

Figure 5: Example of Morphology-based Image Enhancement. 

3.   Accomplishments in Page Segmentation [Argon, Lehigh, Polar Rain, SUNY, 
UMD| 

The objective of the page segmentation task is to decompose an image into "perceptually 
consistent" zones, where perceptual consistency is described in terms of local texture similarities, 
with the goal of producing zones that contain a single type of content (machine-printed text, 
handwritten text, graphics, etc.). In addition, accurate segmentation of text zones into lines of text 
is critical for document level OCR systems. The MADCAT dataset distributed by LDC contains 
many documents where the handwritten text is very crowded and there is skew in multiple 
directions within the same document. Grouping small elements such as dots and other diacritics 
with the right text line is a big challenge for handwritten text. In this phase we focused on 
segmenting the image into perceptually consistent zones and line segmentation for text zones. 

3.1 Page Zoning [Lehigh, UMD] 

Pixel Level Zoning [Lehigh): During this phase, we investigated pixel-based approaches for 
page segmentation that, while computationally demanding, offer the potential to be general and 
robust. Our techniques employ a range of classifier technologies, including brute-force k-Nearest 
Neighbors (kNN), fast approximate kNN using hashed k-d trees, classification and regression 
trees, and locality-sensitive hashing. Initial experiments suggested that per-pixel accuracies were 
modest, in the range of 60% to 70%. Accuracy improvements of up to 80% were achieved by 



refinements in ground-truthing protocols. Recent algorithmic improvements to our approximate 
kNN classifier using hashed k-D trees allows trade-offs between runtime and accuracy which are 
highly promising: a 23-times speedup with less than 0.1% loss of accuracy; or a 60-timcs 
speedup with less than 5% loss of accuracy. We plan to investigate this further in the next phase. 

Voronoi-Tessellation Zoning |UMD]: Page segmentation techniques typically divide the image 
into non-overlapping rectangular boxes around perceptually consistent zones (text, graphics, 
tables, etc.). But in pages where the layout is arbitrary, extracting non-overlapping rectangular 
zones is not only infeasible but also undesired. We have therefore developed a page segmentation 
algorithm based on Voronoi-tessellation to extract arbitrary-shaped zones with homogeneous 
content. The algorithm proceeds as follows: 

Figure 6: Example of page zoning using Voronoi-Tessellation algorithm 

1. A page is segmented into regions using Voronoi tessellation     based on the connected 
components to obtain the candidates of boundaries of document components. 

2. The candidates are utilized to estimate the inter-character, inter-line and inter-column 
gaps without the use of domain specific parameters so as to select the boundaries. 

3. The regions are separated by a series of small line segments marking boundaries between 
adjacent regions. 

4. Line segments surrounding each region are sewn together to form a polygon. Hence, 
polygonal-based region segmentation is achieved. 

5. Each region-polygon is approximated to contain minimum number of edges. 

Our initial assessments shows that the basic Voronoi cell approach performs reasonably well on 
clean documents, but noise artifacts result in creation of false regions. An example of the 
performance of the algorithm is shown in Figure 6. 

3.2 Text Line Segmentation [Argon, Polar Rain, SUNY, UMD] 

Local Concavity Map based Text Line Segmentation [SUNY): We implemented a line finding 
library using an adaptive local connectivity map. In this approach, we generated a location mask 



for the line pattern and extracted text lines by superimposing the location mask on the original 
image. While this works reasonably well for most pages, we found that the performance degrades 
on documents with crowded lines and wide variability in skew. Therefore, we implemented a 
new line-segmentation algorithm using a steerable filter to assist the text line segmentation 
process. The steerable directional filter is a mathematical image filter that finds the local 
orientation of a text line by scanning in multiple directions. The maximum response from a 
convolution of the filter with the image gives the text line direction. Finally, the image is 
modified into a text line pattern map. 
Another problem in text line segmentation is the problem of separating components that span 
adjacent lines or are touching components from other lines. In order to tackle this problem, a 
stroke segment that crosses the text line is automatically detected and annotated. A splitting 
reference line is found using center of gravities of the contours and splitting is done only for the 
detected touching pieces. The splitting is done at the contour level which allows a reconstruction 
of the character images. Figure 7 shows a crowded page and the result from the text line finding 
module. The highlighted areas are bounding boxes of touching characters crossing different text 
lines. The split characters are reconstructed and accurately grouped with the text lines that they 
belong to. 
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Figure 7: Example of Text-line separation using Steerable filter 

Affinity Propagation based Handwritten Line Segmentation |UMD]: To overcome the 
challenges in line detection for handwritten Arabic, we developed a multi-stage approach to the 
task. In the first stage, we automatically determine an area threshold that is used to remove 
diacritics. Next, we fit a 2-Gaussian mixture model to the areas of the connected components. The 
Gaussian component with the smaller mean value represents the average diacritic area and the 
Gaussian component with the larger value represents the average non-diacritic area. In order to 
determine document zones with different orientations, we apply the Affinity Propagation (AP) 
method. AP is an unsupervised clustering method that depends on computing a pair-wise 
similarity measure between pairs of data points. To detect text lines within each text zone, we 
reapply AP on individual zones. However, here we compute the pair-wise similarity based on the 



vertical location of the connected components. In the next phase, we will explore tuning of the 
parameters to optimize line segmentation accuracy. 
Baseline Detection and Slant Correction [Argon]: We implemented a technique for detecting 
and correcting curved and slanted baselines. First, we skeletonized and filtered connected 
components not associated with the baseline. Next, a sliding window encompassing at least three 
baseline related components was used to get sufficient context for each sub-word. Finally, local 
minima and junction points were detected, and Random Sample Consensus (RANSAC) algorithm 
was used to fit a baseline to the original skeleton. For slant correction, each endpoint above the 
baseline was traced back to the vicinity of the baseline, and RANSAC was again used to fit a 
straight line to the path. If more than 50% of the points on this line are returned as inliers by 
RANSAC, then it is considered sufficiently straight to use for slant correction. We have not 
investigated what effect, if any, slant correction has on our recognition rate. A more formal 
evaluation is currently planned for Phase 2. 

Text Verification [Polar Rain): We developed a fast and robust text verification algorithm based 
on Shape-DNA models. This algorithm can be used either as a tool for text segmentation, or for 
identifying homogeneous image regions and for detecting whether homogeneous regions of 
interest are non-text or text regions. The algorithm can also be used to identify the text type, i.e., 
printed or handwritten. In our approach, we first project input image segment onto a database of 
Shape-DNA patterns. Next, we computed histogram statistics of projection distances. Histogram 
of projection distances for text and non-text images as well as printed and handwritten text have 
different characteristics, and this feature is exploited in classifying the text images. Our approach 
takes only 0.5 sec for processing a 1200x800 pixel image. 

Texture-based Text Detection in Camera-captured Images [Argon]: Our approach for text 
detection in camera-captured images is based on measuring shape similarity of texture. However, 
this technique is not suitable to natural images. In this phase, we developed an initial version of 
the text detection module using texture-analysis based approaches. We used different sets of 
features including wavelet coefficient histograms, color, edge orientation, and shape features. 
These were divided into three main groups (wavelet, color, edge/shape) and a Support Vector 
Machine (SVM) classifier was trained on each. The results of these SVMs were combined using 
AdaBoost with logistic sigmoid regression. For training, we have implemented a graphical user 
interface to allow for manual construction of ground-truth data. The tool ingests an image, 
partitions it into super pixels (collection of similar pixels), and classifies each super pixel. These 
classifications can then be manually corrected, and the corrections fed back in as new examples to 
train the SVM classifier. In the coming months, we will run experiments to measure accuracy of 
the text detection module. We trained the SVM and AdaBoost classifiers for text detection on an 
internally collected 29 American-English camera-captured images of signs. We also 
implemented a previously published Plane Parameter Markov Random Field (PP-MRF) approach 
for text rectification. Initial assessment of this approach suggests that significant improvements 
are required to improve performance. 

4.   Accomplishments in Text Recognition [BBN, SUNY, Argon, Columbia] 

The goal of text recognition is to digitize the text in image zones that have been determined as 
containing text. In Phase 1 of the effort, we made several advancements in our hidden Markov 
model (HMM) text recognition framework. Additionally, we explored matching using structural 
features such as graph elements and a novel framework for integrating HMM-based and structural 
matching techniques. 

In this section, we first provide an overview of BBN's Hidden Markov Model (HMM) based text 
recognition. Next, we present a suite of techniques for improving HMM-based text recognition 



and present experimental results on the DARPA Arabic machine printed corpus as well as the 
Phase 1 MADCAT handwritten corpus released by the Linguistic Data Consortium. We conclude 
with results from a novel integration of HMM based recognition and structural matching. 

4.1 Improvements in HMM based Text Recognition [BBN] 

4.1.1     Overview o/HMM-based Text Recognition 

Figure 8 shows a block diagram of our HMM-based text recognition system. The images are first 
pre-processed to remove any skew due to rotation of the text during scanning. They are then 
segmented into lines of text using an HMM-based line finding algorithm. For each line of text, 
features are computed from a sequence of overlapped windows (also called frames). The feature 
extraction program typically computes several features for a single frame. A total of 33 of the 
following script-independent features are extracted from each frame: Percentiles of intensity 
values, Angle, Correlation, and Energy (PACE). Linear Discriminant Analysis (LDA) was then 
applied to reduce the dimension of the feature space from 33 to 15. The resulting vector of 15 
LDA features is a compact numerical representation of the data in the frame, and is the feature 
vector used for training and recognition. 

Training 

Transcriptions Images 

Recognition 

/mages 

K Language Modelin 

Character Sequence 

Figure 8: Block diagram of the BBN OCR system. 

We use a 14-state left-to-right Hidden Markov Model (HMM) to model each character or glyph. 
The model for a word is the concatenation of the HMMs for the individual characters in the word. 
Each state of the HMM has an associated output probability distribution over the features which 
is modeled as a weighted sum of Gaussians. The estimation of the parameters of the HMM is 
performed using the Expectation Maximization (EM) algorithm. In order to reduce the number of 
parameters to be estimated by the EM algorithm, we share Gaussians across different character 
models. 

Arabic is a connected script where each character can be rendered in a different graphical form 
based on its position within a word. However, the underlying sequence of characters in the 
ground truth transcripts is a sequence of Unicode characters. These Unicode characters are 



inherently context independent and typically the browser or the editor renders the character in the 
"presentation-form" based on the neighboring characters. We refer to the context independent 
Unicode character as the "base-form" representation. For training glyph HMMs, we first apply a 
set of transformation rules to convert the base-form character transcripts into presentation-form 
transcripts. Next, we estimate a separate HMM for each presentation-form character. Training on 
the contextual form of the Arabic character rather than the base form of the character captures the 
change in a character glyph due to the neighboring characters. 

The decoding process is a two-pass beam search for the most likely sequence of characters given 
the observed feature vectors. The forward pass is an approximate but efficient procedure for 
generating a small list of character sequences that are possible candidates for being the most 
likely sequence. The backward pass is a more detailed search for the most likely character 
sequence within this small list. 

4.1.2     Baseline Experiments on Machine-printed Images 

In Phase 1 of the MADCAT effort, prior to the release of the handwritten data, we performed our 
text recognition research on the 1995 DARPA Arabic machine-print (DAMP) corpus collected by 
SAIC. The corpus consists of 297 images scanned from newspapers, books, magazines, etc. The 
corpus was partitioned into three sets: 60 images for development, 60 images for testing, and 177 
images for training the OCR system. In addition to the 177 images from the DAMP corpus, we 
used 380 synthetically generated images. These 380 images were created by printing 100 
newswirc text passages in multiple font types and font sizes. 

In our experiments on the DAMP corpus, we used 14-state context-independent HMMs for 
modeling the contextual form of Arabic characters and a word or character n-gram language 
model (LM). From the training data, we estimated HMMs for a set of 162 presentation-form 
characters. This set includes Arabic characters, Arabic numerals, and some additional non-Arabic 
numerals and characters. A total of 68K Gaussian mixtures were estimated with a maximum of 
512 Gaussian components assigned to each character in the training lexicon. 

Next, we estimated both character and word LMs from transcriptions of the images from the 
training set as well as from 2.6 million words of Arabic newswire data. The character lexicon 
used for character «-grams consisted of all 162 characters observed in the training images. The 
word lexicon was restricted to the 65K most frequent words in the LM training data. Both the 
character and word LMs were trained using Witten-Bell discounting. 

We performed recognition experiments on the test set to compare character LM to word LM. The 
configuration used for recognition has two steps. First, the two pass decoding described above 
was used to generate an N-best list (character or word N-best depending on the type of language 
model). Next, we rescored the N-best list using a trigram word or character LM). The weights for 
combining different knowledge sources in the N-best rescoring were estimated on the 
development set. In Table 1, we summarize the word error rate (WER) for both the word and 
character LM measured on the test set. As shown in the table, the character trigram LM resulted 
in a WER of 12.3% compared to 15.9% obtained by using a word LM. Although a word trigram 
models wider context than a character trigram, in our recognition experiments the WER for the 
word trigram is higher than the character trigram LM. We believe this is because of the high out- 
of-vocabulary (OOV) rate of the word LM. The word lexicon results in an OOV rate of 12.6% on 
the test set, therefore the errors are dominated by OOVs. 
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Language Model - 
Trigram %WER 

Word 15.9 

Character 12.3 

PAW 10.1 

Table 1: Comparison of different I,Ms for recognition on the DAMP test set. 

4.1.3     Improvements on Machine-Printed Images 
We explored techniques for improving the language model (LM) as well as the glyph models on 
the DAMP corpus. 
Higher-order LMs: For the same «-gram order, a character «-gram LM models a much narrower 
context than the word LM. Therefore, to model a wider n-gram context using characters, we 
estimated «-gram character LMs with n > 3. Since our two-pass decoder only supports LMs with 
n<=3, we used the higher order LMs only for rescoring the N-best list generated by decoding 
with a trigram character LM. As shown in Table, 2 increasing the n-gram order to five decreased 
the WER by 0.8% absolute over using the trigram LM. However, increasing the n-gram order 
beyond five did not yield additional WER reduction. 
PAW-based LMs: A Part-of-Arabic word (PAW) is a character sequence that is typically 
rendered as a single connected component in an image. PAWs can be sub-words or words and are 
derived from the morpho-lexical rules of the Arabic language. An LM trained with PAWs as 
lexical units is likely to provide wider context at the same n-gram order than a character LM, 
while still preserving the unlimited vocabulary coverage property of the character LM. 

Character N-gram 
Order %WER 

n=3 12.3 

n=5 11.5 

n=7 11.7 

Table 2: N-best rescoring experiments with character LMs with n>3. 

We estimated a PAW trigram LM from the same training data used for character and word LMs. 
A total of 9K PAWs including individual characters were used as lexicon units in the PAW LM. 
The number of PAWs was restricted to 9K by imposing a length cutoff of six characters for the 
PAWs. The length cutoff was empirically determined on the development set by decoding with 
different cutoffs. Next, we decoded the test set using the PAW LM and the glyph HMMs 
described in Section 2.3.2.1. Finally, the N-best was rescored using the PAW trigram LM. As 
shown in the last row of Table 1, the PAW trigram LM resulted in a WER of 10.1%, a 
significantly lower WER than the word and the character trigram LM. We also explored using a 
higher order PAW LM for N-best rescoring. However, experimentations with w-gram order > 3 
using a PAW LM did not show any additional improvement. 
Context-dependent Glyph HMMs: In Arabic script the shape of a character glyph often varies 
based on the position of the character within a word. One approach for modeling this context 
dependency is to use presentation-form characters as modeling units for training context 
independent (CI) HMMs. Another alternative is to use base-forms to model glyphs, but instead of 
using CI HMMs, use context-dependent (CD) HMMs. 



We performed context-dependent (CD) training with both presentation form characters and base 
form characters. We also used two different configurations for tying HMM parameters. In the 
first configuration, referred to as character-tied mixture (CTM), a single mixture of Gaussians is 
shared by all contexts of a particular character. In the second configuration, which we refer to as 
position-dependent tied mixture (PDTM), a separate set of Gaussians is estimated for each state 
of all the context-dependent HMMs associated with a particular character. For example, we 
estimate a set of 'AT* Gaussians for the first state of all HMMs associated with the character 
"Alif', and a separate set of 'fC Gaussians for the second state of all HMMs for "Alif', and so 
forth. 

In addition to sharing the Gaussians, we used a decision-tree based clustering of mixture weights 
for both the CTM and PDTM configuration. The decision-tree uses a set of questions based on 
different characteristics of the characters, e.g. whether the character is an ascender or a descender. 

In Table 3, we compare the performance of different CD configurations with the baseline 
configuration described in Section 4.1.3. For fair comparison all models were configured to have 
approximately the same total number of Gaussian mixtures as the baseline configuration. 
For comparing the different CD models, we decoded the test set using the word LM described in 
Section 4.1.2. As shown in Table 3, CD training using presentation form characters as modeling 
units did not yield any improvement over the baseline CI configuration. A possible reason for this 
result is that the contextual form characters, by definition, model glyph variations depending on 
the relative position of the character within a word. Thus, any additional attempt at modeling 
context merely fragments the training data. 
Unlike presentation form characters, context-dependent modeling using base forms characters 
with PDTM tying resulted in a 0.7% absolute reduction in WER over the baseline result of 15.9% 
obtained using CI modeling with presentation form characters. 

Training Configuration %WER 

Pres. form, CI (baseline) 15.9 

Pres. form, CD, CTM 16.9 

Pres. form, CD, PDTM 16.9 

Base form, CD, CTM 16.2 

Base form, CD, PDTM 15.2 

+ MCE training 14.1 

Table 3: Decoding the test set with context-dependent HMMs and word LM. 

Discriminative Training: Traditionally, HMM parameters are estimated using ML criterion. 
However, in recent years discriminative training has been shown to outperform phonetic HMMs 
estimated using ML for speech recognition. Standard ML estimation attempts to find model 
parameters that maximize the likelihood of the training data. In contrast, discriminative training 
attempts to make the correct hypothesis more probable while simultaneously making incorrect 
hypotheses less probable. 
Similar to Minimum Phone Error (MPE) used in speech, recognition, we define the following 
objective function to maximize for performing Minimum Character Error (MCE) training for 
glyph HMMs: 

Z»^(°i Wh)P(h)CharAccuracy{h) 
^ea)=Z'°8- 1,^(0, ww 
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In the equation above, the CharAccuracy(h) is a measure of the number of characters accurately 
generated in hypothesis h, 0{ are the feature vectors, k are the HMM parameters, is Px(Oj\MJ\s 
the glyph model score, and P(h) is the LM probability. 
Next, we used character lattices generated using ML glyph models and a unigram character LM 
to perform MCE training with base form CD HMMs with PDTM parameter tying. The extended 
Baum-Welch algorithm was used for updating parameters and I-smoothing was applied to avoid 
over-training. As shown in Table 3, decoding the test set with the MCE models and the word 
trigram LM resulted in a WERof 14.1%, a 1.1 % absolute reduction in WER over the ML models. 
Finally, to make use of the best glyph HMM and the best LM, we implemented the following 
hybrid recognition setup. First, we used the CI presentation form glyph HMMs estimated using 
ML and the PAW LM to generate an N-best list. Next, the PAW N-best was converted into a 
word N-best. Finally, the base form CD PDTM glyph models estimated using MCE was used to 
rescore the word N-best list. 

Recognition Configuration %WER 

Decoding + N-best rescoring with word LM and ML CI 
pres. form HMMs 

15.9 

Decoding with PAW LM and ML CI pres. form HMMs + 
N-best rescoring with CD PDTM base form HMMs 9.6 

Table 4: Summary of improvements in WER using a hybrid decoding and rescoring strategy. 

In Table 4, we compare the results from the hybrid recognition configuration above to the 
baseline recognition configuration with ML CI glyph HMMs and word LM. As shown in the 
table, we have achieved a 40% relative reduction in WER over our baseline configuration. 

4.1.4     Baseline Experiments on MADCA T Handwritten Corpus 
During the 4-month period June-December 2008, LDC released a total of 9741 scanned images of 
handwritten Arabic text of newswire articles, weblog posts, and newsgroup posts, along with the 
corresponding ground truth annotations. First, we trained glyph HMMs after each release using 
the Percentile, angle, correlation, and energy (PACE) features used as baseline feature set. We 
also measured the effect of incrementally increasing the amount of training data used for glyph 
modeling on text recognition performance. 
Feature Extraction: In order to convert the 2-dimensional images into a 1-dimensional sequence 
of features needed to build HMMs, we typically determine the location of the top and bottom 
boundaries of the lines of text, and then compute the feature vector for each of these lines. If the 
lines are regularly spaced as in machine-printed data, HMM-based or connected component based 
line-finding algorithms achieve near-perfect accuracy. However, in free-flowing handwritten 
data, adjacent lines of text often overlap. Also, handwritten text exhibits significant variations in 
baseline within a text line. This is an issue for feature extraction since the width of the frame is 
set proportional to the height of the line. All of the above factors make text line finding/separation 
for handwritten text a difficult problem. For our experiments in this phase, we used the 
rectangular bounding boxes on the individual word images to obtain a piece-wise linear 
approximation of the envelope for the text line. Features were computed from the piece-wise 
linear envelope around the line image. The left and right boundaries of the word were not used for 
feature extraction. The PACE features were used as the baseline feature set. 
Training: In handwritten Arabic text, the shape of the character glyph often varies depending on 
the characters that precede and follow it. Such context-dependence of glyphs is typical of cursive 
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connected scripts, but can vary even more widely because of a writer's personal style. Context- 
dependent HMMs offer a robust, data driven approach for modeling contextual information. We 
found that context-dependent models out-performed over context-independent models for 
machine-printed Arabic text. We trained Position-dependent tied mixture (PDTM) HMM models, 
where a separate set of Gaussians is estimated for each state of all the context-dependent HMMs 
associated with a particular character. In total 254K Gaussians were trained for 176 unique 
characters (including Arabic characters, numerals, punctuations and English characters). 
Recognition: A trigram language model trained on 90 million words of Arabic newswire data 
was used for recognition. The decoding lexicon consisted of 92,000 of the most frequent words in 
our Arabic text corpus. The out of vocabulary (OOV) rate of the test set measured against the 
92K lexicon is 7.5%. The forward pass is a fast match beam search using the HMMs and an 
approximate bi-gram language model. The output of the forward pass consists of the most likely 
word-ends per frame. The backward pass operates on the set of choices from the forward pass to 
restrict the search space and an approximate trigram language model to produce an N-best list of 
hypotheses. The N-best list is then re-ranked using a combination of the acoustic scores, and a 
language model score. The weights for re-ranking were tuned on the development set. 
A separate set of 442 images released by LDC was split into two parts; one was used for 
development and the other for testing. Table 5 shows the performance on the test set with varying 
amounts of training data for glyph modeling. Increasing the amount of glyph model training data 
by a factor of 3 resulted in an 8.7% relative drop in WER for authors who were never seen in 
training. Note that the WER was measured by detaching punctuations and sequences of digits 
from other words to which they may be attached. Surprisingly, the WER on the images by authors 
in training is much worse than those by authors who are not in training. We believe that this is an 
artifact of the data and scribe selection of the test set under consideration. Experiments on a 
different test set held out from the training data showed the performance on scribes not seen in 
training to be 31% relative worse than those who were represented in training. Note that 
increasing the amount of data improves performance on the pages written by authors who are not 
seen in training. However, this is not the case for authors represented well in training. 

Number of 
Training Images 

Number of 
Training Authors 

%WER 

Authors in 
Training 

Authors not in 
Training 

848 10 51.3 36.3 

3371 20 41.1 31.1 

5288 38 41.6 29.4 

8253 58 43.8 28.6 

9741 71 43.1 28.4 

lilili- 5: OCR Performance with Glvnh models trained on different amounts of trainina data 

4.1.5     Improvements on Handwritten Corpus 
In the following we summarize the improvements in HMM-based text recognition on the 
MADCAT data. 
Unsupervised Adaptation [BBN]: Adaptation has been widely used to combat the variability in 
speech in automatic speech recognition and to adapt to fonts and degradations in text recognition 
of machine-printed documents. In handwritten text variability occurs due to inter-scribe 
differences in writing style, font and slant. 
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We performed MLLR estimation to update the Gaussian means of the HMMs using the text 
recognition output of each page in the test set. The updated models were then used to re-decode 
the given page. Unsupervised adaptation gave a relative improvement of 4.5% as shown in Table 
6. 

Improvements %WER 
PACE Features (Baseline) 35.7 

+ Unsupervised Adaptation 34.1 

+ Gradient & Concavity Features 31.3 

Tahlr ft: Snmmarv nf handwritten text rprnpnitinn imiiriivi'miiiK nn TVf AOr'ATrtata. 

Integration of Structural Features in HMM based Glyph Modeling [BBN, SUNY]: In this 
phase, we explored two new structural features for text recognition - Directional Element 
Features (DEF) and Gradient-Structure-Concavity (GSC) features. The directional element 
features are based on the idea of non-linear matching of the directions of the patterns, and are 
variants of the gradient features. In the Arabic script, many letters share common primary shapes 
and differ only in the number and position of the dots and strokes. Structural features capture 
intuitive aspects of writing such as loops, branch-points, endpoints, and dots. One such family of 
features is the GSC (Gradient, Structure and Concavity) features. GSC features are symbolic, 
multi-resolution features that combine three different attributes of the shape of a character - the 
gradient representing the local orientation of strokes; structural features that extend the gradient 
to longer distances and provide information about stroke trajectories; and concavity that captures 
stroke relationships at long distances. While GSC features have successfully been used in 
recognition of isolated digits and handwritten words in the past using segmentation-based 
approaches, they have never been used in the HMM framework. In this section, we describe a 
novel integration of these structural features in BBN's HMM-based text recognition framework. 
For computing the GSC features, first a gradient map is constructed from the normalized image 
by estimating gradient value and direction at each pixel. Next, Gradient features are obtained by 
counting the pixels which have almost the same gradient. The structure features enumerate 
complex patterns of the contour. To compute the concavity features, pixels which lie in certain 
special regions such as holes and strokes are detected. The image is then divided into bins and the 
number of such pixels in each bin is counted. 

Tightening 
window w, 

Frame 
window w, 

Adjusted 
frame 

window w„ 

Axial 

Figure 9. Illustration of frame tightening for feature computation. 

In Phase 1 of the effort, we integrated GSC features into the HMM framework as follows. First, 
we used a wider window than the PACE features for computing the GSC features. Since the 
baseline of a word image may fluctuate within portions of the same word, we also algorithmically 
tightened the upper and lower boundaries of the sliding window. This ensures that the features are 
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normalized and also minimizes the variation of the feature space. Figure 9 shows thematically the 
tightening of the frame. We define the width of the frame (wf) as wf.width = wf.height/12, where 
Wf.height is the height of the word image. A tightened window wt is obtained by expanding wf to 
both the left and right sides so that w,.width = 5wf.width. The upper and lower boundaries of wf 

are redefined by the bounding box of black pixels within w,. We thus obtain an adjusted window 
wa. The region within wf which is outside of wa does not have any black pixels. The GSC features 
are computed from the adjusted frame window wa. The tightened window wa is divided evenly 
into 12 overlapping vertical bins, and 4 sets of GSC features are computed for each bin. A total of 
48 of each of the GSC features are computed for each frame, and we use an LDA to reduce the 
dimension of the feature vector to 15. 

We tried different combinations of the PACE, DEF and individual GSC features with and without 
frame tightening. Frame tightening consistently showed improved performance. The DEFs 
provided a 4% relative improvement in WER. The combination of Gradient and Concavity 
features with the PACE features yielded the biggest gain - an 8% relative reduction in WER as 
shown in Table 6. 
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Figure 10: Example of critical point and chain code features extracted by SUNY. 

Chain-code and critical point Features [SUNY]: In addition to the integration of GSC features 
into the HMM framework performed by BBN, our team investigated other novel features for 
improving handwriting recognition. In particular, SUNY developed the critical point chaincode 
features. These features trace the "chaincode" of text and identify critical points such as sharp 
turning points, end points, crossing points, and connection points in the text. Critical points are 
ordered in the sequence that they are encountered during the trace and serve as a coded feature 
vector. Figure 10 shows a sample output from the feature extraction library for chaincode and. In 
the next phase, we plan to integrate these features in the HMM-based text recognition system. 
Slant Correction (BBN]: In order to normalize the hand-written documents by different authors, 
we pre-processed the images by automatically correcting the slant in each word image by 
measuring the relative pixel organization along the perimeter of connected components and then 
used these statistics to reorganize each pixel position to reduce the overall slant in the image. The 
slant-corrected images used for text recognition did not result in any improvements. 

Page-line Removal Experiments (BBN]: It was found that the performance of the text 
recognition system was considerably worse on pages with horizontal rules compared to pages 
without such rules. We pre-processed the images to remove lines using three line-removal 
algorithms from: a) Polar Rain, b) SUNY, and c) BBN- Heuristic. The details of the algorithms 
are described in Section 2.1. The results in Table 7 on the test set pages containing ruled lines 
compare the three algorithms against a baseline without any line removal. The SUNY and BBN 
algorithms result in a small improvement in performance over the baseline, with SUNY's 
technique giving a relative improvement of 1.8%. 
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Page-line Removal Algorithm % WER 
None 38.1 

SUNY 37.4 

BBN 37.9 

Polar Rain 39.3 

Table 7: Comparison of performance of different line removal algorithms on test set images with ruled lines. 

In Figure 11, we show an instance of line-removal performed by the three algorithms on a section 
of an image. The SUNY algorithm successfully removes lines from the image, but doesn't 
perform noise-removal in addition to line-removal as done by the BBN and Polar Rain 
algorithms. The BBN algorithm removes some character glyphs which are connected to the line 
while performing line removal resulting in disconnected character segments in the image. Since 
the feature extraction algorithm does not rely on performing connected component analysis, the 
creation of disconnected components does not significantly affect system performance. The Polar 
Rain algorithm also removes some text pixels associated with the character while performing line 
removal. 

SUNY 

V ^ 

Polar Rain 
^*U~J,\   ^>\^— M-   J>N 

Figure 11: Examples of line removal using the different algorithms. 

Additionally, we also trained our HMM-based text recognition system with MRF ruled-line 
removal and restoration algorithm applied to all images. Next, we decoded the test set with the 
models trained using GC+PACE features. Using the MRF ruled-line removal resulted in a modest 
improvement of 0.6% in the WER. 

Improved Language Modeling [Columbia, BBN]: In this phase, we developed several different 
n-gram language models, based on different Arabic word representations. Orthographically 
defined representations included the basic word forms, the word-parts (sequences of graphically 
connected sub-words), letters (graphemic stand-alone form), and letter shapes (i.e. glyph-like 
representations that remember the contextual allographic form of the letter). We also explored 
versions of these models that remove all dots, since missing and misplaced dots are common 
handwriting errors. Morphologically defined representations included diacritized and 
undiacritized lexemes and basic POS tags. We also began exploring more complex Factored 
Language Models, which provide a means to combine several features into one model. The 
models were trained using various volumes of data taken from the Arabic Gigaword corpus. The 
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lexeme and other morphological models required the use of MADA to perform lemmatization as 
an initial step before training the model. We integrated the initial version of Columbia's LM 
rescoring module into BBN's text recognition system and are presently optimizing it on the 
MADCAT data. 

4.2 Probabilistic Bipartite-Graph Matching [Argon] 

Graph-based features: In this phase, we attempted to capture the structural characteristics of 
text by extracting graph-analytic features. The feature types considered were loops, dots, 
endpoints, corners, 3-ways, 4-ways, and nodes of degree greater than four. Figure 12 shows 
examples of some graph features in Arabic. 

Figure 12: Example of Graph features in Arabic 

The generation of these graph features consists of two main steps: 
1. Graph Generation: First, we apply a thinning algorithm to reduce text glyphs to 1-pixel 

wide skeletons. Next, we convert the skeleton to a graph representation by identifying 
intersections, end-points, and loops. 

2. Feature Computation: We compute discrete structural symbols such as arcs, loops, 
intersections, etc. or, extract continuous attributes of above symbols including relative 
position, orientation, and angle between edges. 

Graph Matching: In the document understanding seedling effort, we performed bipartite 
matching against selected features to generate pairings between features in the graph. In the first 
phase of the MADCAT program, our focus was to extend the basic BGM approach to be machine 
trainable. Through the use of kernel methods and Relevance Vector Machines (RVM), we 
developed a mathematically rigorous approach to probabilistic graph comparison. We have also 
started implementing a hyperkernel optimization routine using Brent's method in multiple 
dimensions to allow automated calculation of hyperkernel parameters. 

4.3 Stochastic Segment Models [BBN| 

Stochastic segment modeling involves a novel combination of HMMs and 2-D matching 
approaches such as the bipartite graph matching (BGM). It aims to improve the HMM-based 
handwritten Arabic text recognition by integrating long-span segment level information with the 
shorter-span, frame-based information from the HMM. In our current approach, character HMMs 
that use PACE features are used to force-align training transcriptions to word or line images to 
automatically generate character boundaries. Next, 2-D images (the stochastic segments) are 
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extracted for each character using these approximate boundaries. Features computed on these 2-D 
"whole character" images are used to train "segment models". In our current approach, we use 
support vector machines (SVMs) trained with Gradient and Concavity (GC) features for modeling 
of stochastic character images. 

Re-ordered N-best list 

Dev dataset 
HMM N-best 
Generation * 

Test dataset 

N-best list 

- • 

HMM Rescoring segmentation SVM Rescoring 

* 
HMM Scor ss - Dev          SVM Scores - Dev SVM Scores • Test 

t     • i > 

Score Weight 
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weights 

 *• 

Score Integration 

T 
HMM Scores • Test 

Figure 13: N-best rescoring procedure for using stochastic segment models, 

During recognition, first the HMM character models are used to generate segment boundaries for 
each hypothesis in the n-best list. Each segment is evaluated against the segment models which 
assigns a probabilistic score. The segment models in our initial implementation are support vector 
machines (SVMs) trained on stochastic segments in the training images. Finally, the n-best list is 
rescored by combining the segment model scores with the existing HMM scores, as well as 
language model scores using weights that are optimized to minimize overall error rate on a 
development set. Figure 13 is a schematic representation of our current stochastic segment 
modeling approach. In Table 8, we report on improvements in WER for rescoring n-best lists on 
the AMA test with the above approach. As shown, using the HMM and the SVM segment scores 
result in a 2.3% absolute reduction in WER over using only the HMM for rescoring the n-best. 

Rescoring Procedure %WER 
HMM only 55.1 
HMM + SVM 52.8 

Table 8: Stochastic segment based rescoring on AMA test set. 

5.   Integration with GALE MT [BBN] 

The ultimate goal of the MADCAT program is to produce accurate English transcriptions from 
text in Arabic images. Therefore, we need to integrate the document recognition and 
understanding capabilities being developed under the MADCAT program with machine 
translation (MT) and distillation technologies being advanced under the DARPA GALE MT. 
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In this phase we used BBN's hierarchical MT system (HierDec) being advanced under GALE. 
Since the MADCAT data consists of a combination of Newswire and Web data, we ran 
experiments with four different MT systems tuned on either Newswire or Web genre data with 
and without discriminatively determined corpus weights. The system tuned to web genre with 
corpus weights out-performed the other three systems on the combined web and newswire test 
set. We also performed system combination with confusion networks similar to the GALE 
system. The primary difference between system combination on MADCAT and GALE is that the 
systems being combined in GALE program come from different sites on the BBN-led AGILE 
team that use different translation methodologies, whereas for MADCAT system combination, 
we simply used four different configurations of the BBN HierDec. The system weights were 
tuned for TERBLEU on a combination of Newswire and Web genre documents from a held-out 
GALE test set. As shown in Table 9, the combined system outperforms the single-best system 
across both Newswire and Web genres. 

System Mixed-Case TER 

Newswire Web 
Single Best System 50.1 56.5 

Combined System 49.4 55.7 

Table 9: Genre-wise comparison of single best system and combined MT system on error-free text. 

Presently, we perform machine translation (MT) on the single-best OCR output. Since the 1-best 
OCR output has a high error rate and a lattice or n-best is likely to contain the correct answer, we 
performed an experiment to establish the lower bound for TER by using the best/oracle answer in 
the OCR n-best as the input to the MT system. As shown in Table 10, for the Devtest Part la 
released by LDC, the improvement in translation error rate (TER) for using the oracle n-best 
hypothesis is modest. Since the oracle hypothesis has a relatively high error rate, we will repeat 
this experiment with a larger n-best list or a lattice in the next phase. 

System %WER TER 

Error-free text - 56.4 

1 -best OCR hypothesis 31.5 65.8 

Oracle OCR hypothesis 23.3 63.7 

Table 10: Impact of using Oracle n-best hypotheses for translation. 

6. Metadata Extraction - Logo Recognition [BAE] 
Document logo recognition is a valuable component of an overall document analysis activity. 
Logo recognition can provide information about the document authors and subject, and can act as 
a quick pre-screening process for document review. Documents containing certain logos-of- 
interest can be flagged for review by human analysts. Automated logo recognition can be 
difficult for several reasons. A number of corrupting factors can degrade logo image quality and 
thus reduce performance of logo recognition algorithms. Geometric logo misalignments, such as 
rigid body (translation, rotation, and scale offsets) or more general affine (including skew), can 
result from improper document copying, mis-calibrated copy machines, and inaccurate logo 
segmentation. The presence of noise may be an additional problem. Documents that have been 
duplicated many times, or have been duplicated by degraded copiers may experience salt-and- 
pepper noise, shading issues, and pixel drop-out. The presence of these contaminating effects can 
cause difficulties for algorithms based on various technologies. For example, approaches based 
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on geometric features such as corners and shape-based features may be reduced in the presence of 
noise, which causes the generation of false features. Spot noise, in which pixel blobs can block 
out small regions of the image, can change the geometric structure of the image thereby reducing 
matching performance. 
In this phase, we performed logo recognition experiments to assess the feasibility of two general 
approaches; spatial domain correlation approaches, and radon transform domain approaches. Our 
initial experiments on the UMD logo database and the tobacco logo database indicate that phase 
correlation-based approaches work better than the radon transform. 
We investigated use of the Alpha-Rooted Phase Correlation (ARPC) matching approach in the 
Fourier log-polar domain. The motivation for this was to perform translation, scale, and rotation- 
invariant logo recognition. We investigated tolerance of Fourier log-polar domain matching as a 
function of logo rotation. It was determined that a combination of the interplay between digital 
sampling and rotation created artifacts that degraded recognition performance. We also 
determined that error in the cartesian to polar coordinate conversion was a secondary error source 
which degraded performance. We subsequently built in rotational tolerance by including rotated 
reference logos associated to each reference logo, and regenerated verification performance 
results. We also revisited application of the spatial domain ARPC approach to recognition over 
the UMD logo database. We found that the primary reason for degradation of the spatial domain 
ARPC approach is the deterioration of the self match score in the presence of logo alignment 
errors. The addition of the rotational tolerance improved the overall verification performance by 
increasing self-match scores. We also investigated tolerance of the spatial domain ARPC 
approach to logo rotation. We defined rotational robustness metrics and determined values of the 
alpha-rooting parameters that optimized the metrics. 
With the reception of additional logo imagery, we revisited the radon transform domain ARPC 
approach to logo recognition. We discovered that the artifacts due to logo image padding and the 
rectangular shape of the image bounding box degraded recognition performance. Recognition 
performance was significantly dependent on the degree of artifacts present in the radon transform 
domain. We developed an algorithm to estimate appropriate cropping of the radon transform 
image to reduce the presence of artifacts. We investigated the rotational tolerance of the cropped 
radon transform and found that appropriate artifact reduction can produce reasonable rotation 
tolerance. We generated logo verification performance results over the UMD logo database, in 
the form of Receiver Operating Characteristics (ROC) curves. 
Finally, we developed reverse videoing of the pixel values for removing the artifacts caused by 
Radon transform. In addition, we developed a translation normalization approach and a scale 
estimation algorithm in the radon transform domain. Together with the rotational invariance of 
the radon transform and the use of ARPC, we developed a recognition approach invariant to logo 
translation, rotation, and scale. 

7. Evaluation System and Accomplishment of Phase 1 Goals [BBN] 
We participated in the MADCAT Phase 1 evaluation held in September 2008. The glyph model 
used in the evaluation system was trained on a total of 8253 images from 58 different authors. 
Position-dependent tied mixture (PDTM) HMM models were trained for a total of 176 unique 
characters. A trigram language model trained on 90 million words of the GALE corpus in 
combination with a 92K dictionary was used for recognition. Recognition was performed using a 
two-pass search strategy. The resulting n-best list was then re-ranked using a combination of the 
acoustic scores, and a language model score which does not model the "white space" token. The 
weights for re-ranking were tuned on the development set. The top best hypothesis from the re- 
ranked n-best list was used to adapt the means of the HMM model via MLLR estimation. We 
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trained two text recognition systems - one trained on PACE features, and the other trained on the 
PACE and gradient and concavity (GC) features, referred to as the GCPACE system. 
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Figure 14: Plot of Accuracy versus Percentage of documents on Phase 1 Evaluation Set. 

The MT system used for translation was the BBN's hierarchical MT engines. The best translation 
output on error-free text was obtained by combining the MT decoding results from four 
differently tuned systems. 
System combination works best when the systems being combined are sufficiently different. 
Therefore in order to introduce as much variability in the systems being combined as possible, we 
mix-and-match the two text recognition systems and four MT systems in order to produce four 
final system outputs for combination. The details are shown in Table 11. The combined system 
out-performed the single best system giving a relative gain of 4.3% in mixed-case TER. 

OCR 
System MT System 

%WER Mixed-case 
TER 

Mixed-case 
BLEU METEOR 

GCPACE Web, Corpus Weights On 31.5 65.6 18.4 45.5 

PACE Web, Corpus Weights Off 34.4 67.0 17.7 44.0 

PACE Newswire, Corpus Weights On 34.4 67.3 17.1 43.8 

GCPACE Newswire, Corpus Weights Off 31.5 66.5 17.5 45.2 

System Combination 62.8 19.5 46.0 

Table II: Phase 1 evaluation system results on text recognition output of test set. 
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The program metric for MADCAT is human translation error rate (HTER), which involves post- 
editing the system output by human annotators. The HTER measured on our MADCAT Phase 1 
evaluation output is shown in Figure 14. As can be seen from the figure, our team successfully 
accomplished the Phase 1 targets for MADCAT and we have a modest head-room towards the 
Phase 2 targets. 

8.   Analysis and Future Work [BBN| 

Periodic analyses of causes for errors are a part of our technical plan for MADCAT. In Phase 1, 
we developed a comprehensive error analysis methodology for understanding the causes of errors 
for text recognition. Our preliminary results indicate the following are the four main causes of 
errors: 

1. Poor legibility: significant fraction of words on the page are difficult to read 
2. Overlapping words/lines: page is too crowded resulting in words from adjacent lines are 

touching each other 
3. Ruled page-lines: presence of ruled page-lines on the image 
4. Skew: the baseline within the text line exhibits varying orientation 

For Phase 2 of the effort, we have created a technical plan to address the above causes of errors in 
our MADCAT system. We also plan on performing a more detailed analysis to refine the 
technical plan for Phase 2. 
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